P.R. GOVT. COLLEGE (AUTONOMOUS), KAKINADA

H B.Sc. - MATHEMATICS - Semester - III (w.e.f. 2017-2018)

Course: ABSTRACT ALGEBRA

Total Hrs. of Teaching-Learning: 90 @ 6 h / Week

Total Credits: 05

Objective:

· To learn about the basic structure in Algebra

· To understand the concepts and able to write the proofs to theorems

· To know about the applications of group theory in real world problems

Unit I: Groups

(20 hours)

Binary Operation – Algebraic structure – semi group – monoid – Definition and elementary properties of a Group – Finite and Infinite groups – Examples – Order of a group – Composition tables with examples.

Unit II: Subgroups, Cosets and Lagrange's Theorem

(20hours)

Definition of Complex – Multiplication of two complexes – Inverse of a complex – Subgroup definition – Examples - Criterion for a complex to be a subgroup – Criterion for the product of two subgroups to be a subgroup – Union and intersection of subgroups.

Cosets definition – Properties of cosets – Index of subgroup of a finite group – Lagrange's Theorem.

Unit III: Normal Subgroups

(17 hours)

Definition of normal subgroup – Proper and improper normal subgroup – Hamilton group – Criterion for a subgroup to be a normal subgroup – Intersection of two normal subgroups – Subgroup of index 2 is a normal subgroup – Simple group – Quotient group – Criteria for the existence of a quotient group.

Unit IV: Homomorphism

(16 hours)

Definition of homomorphism – Image of homomorphism – elementary properties of homomorphism – Definition and elementary properties of Isomorphism and automorphism – Kernel of a homomorphism – Fundamental theorem on homomorphism and applications.

Unit V: Permutations and Cyclic Groups

(17 hours)

Definition of permutation – Permutation multiplication – Inverse of a permutation – Cyclic permutations – Transposition – Even and odd permutations – Cayley's theorem.

Definition of cyclic group - Elementary properties - Classification of cyclic groups.

Additional Inputs: Applications of group theory

Text Book:

Abstract Algebra by J.B.Fraleigh

Books for reference:

- 1. A text book of Mathematics, S. Chand and Company, Ltd.
- 2. Modern Algebra by Gupta and Malik.
- 3. Elements of Real Analysis by Santhi Nararayana & M. D. Raisinghania.

BLUE PRINT FOR QUESTION PAPER PATTERN

SEMESTER-III

SEMESTER-III					
Unit	ТОРІС	V.S.A.Q	S.A.Q	E.Q	Marks allotted to the Unit
I	Groups	1	1	2	22
11	Subgroups, Cosets & Lagrange's theorem	1	1	2	22
III	Normal Subgroups	1	1	1	14
IV	Homomorphism	1	1	1	14
V	Permutations and Cyclic groups	1	1	2	22
Total		5	5	8	94

V.S.A.Q. = Very short answer questions (1 mark)

S.A.Q. = Short answer questions (5 marks)

E.Q = Essay questions (8 marks)

Very short answer questions : $5 \times 1 = 05$

Short answer questions : $3 \times 5 = 15$

Essay questions : $5 \times 8 = 40$

Total Marks = 60

.....

P.R. Government College (Autonomous), Kakinada II year B.Sc., Degree Examinations - III Semester Mathematics Course: Abstract Algebra Paper III (Model Paper w.e.f. 2018 - 2019)

Time: 2Hrs 30 min

Max. Marks: 60

PART-I

Answer the following questions. Each question carries 1 mark.

5 x 1 = 5 M

- Write the Cauchy's composition table for G = (1, ω, ω²).
- 2. Write a proper subgroup of a group $G = \{1, -1, i, -i\}$ with respect to multiplication.
- 3. Define normal subgroup.
- 4. Check whether $f:(Z, +) \to (Z, +)$ defined by $f(x) = x^2$ is a homomorphism or not.
- 5. Write the inverse of the permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$

Answer any THREE questions. Each question carries 5 marks.

 $3 \times 5 = 15 M$

- 6. Prove that the set Z of all integers form an abelian group w.r.t. the operation defined by $a * b = a + b + 2, \forall a, b \in Z.$
- 7. Prove that a non empty complex H of a group G is a subgroup of G if and only if $H = H^{-1}$.
- 8. If M, N are two normal subgroups of G such that $M \cap N = \{e\}$ then every element of M commutes with every element of N.
- 9. If f is a homomorphism of a group G into a group G', then prove that the kernel of f is a normal subgroup of G.
- 10. Express the product (2 5 4) (1 4 3) (2 1) as a product of disjoint cycles and find its inverse.

PART-III

Answer any FIVE questions from the following by choosing at least TWO from each section. $5 \times 8 = 40 \text{ M}$ Each question carries 8 marks.

SECTION-A

- 11. Show that the nth roots of unity form an abelian group with respect to multiplication.
- 12. Prove that a semi group (G,..) is a group if and only if the equations

ax = b, $ya = b \forall a, b \in G$ have unique solutions in G.

- 13. State and Prove the necessary and sufficient condition for a finite complex H of a group G to be a subgroup of G.
- 14. Prove that the union of two subgroups of a group 'G' is a subgroup of 'G' if and only if one is contained in the other.

SECTION-B

- 15. If H is a normal subgroup of a group (G, .), then prove that the product of two right (left) cosets of H is also a right (left) coset of H.
- 16. Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.
- 17. Prove that the set A_n of all even permutations form a normal subgroup of the group of permutations S_n .
- 18. Prove that every subgroup of a cyclic group is cyclic.